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Abstract. Extensive Monte Carlo simulations are used to investigate the stability of the ferromagnetic
ground state in three-dimensional systems of Ising dipoles with added quenched disorder. These systems
model the collective ferromagnetic order observed in various systems with dipolar long-range interactions.
The uniaxial dipolar spins are arranged on a face-centred cubic lattice with periodic boundary conditions.
Finite-size scaling relations for the pure dipolar ferromagnetic system are derived by a renormalisation
group calculation. These functions include logarithmic corrections to the expected mean field behaviour
since the system is in its upper critical dimension. Scaled data confirm the validity of the finite-size scaling
description and results are compared with subsequent analysis of weakly disordered systems. A disorder-
temperature phase diagram displays the preservation of the ferromagnetic ground state with the addition
of small amounts of disorder, suggesting the irrelevance of weak disorder in these systems.

PACS. 75.10.Hk Classical spin models — 75.10.Nr Spin-glass and other random models — 05.50.4-q Lattice
theory and statistics (Ising, Potts, etc.) — 64.60.Fr Equilibrium properties near critical points, critical

exponents

Introduction

Certain closely-packed configurations of uniaxial dipoles
can undergo a transition to a ferromagnetic ground state
even in the absence of a direct exchange interaction [1].
Dense arrangements of ferromagnetic monodomain parti-
cles and some molecular magnetic crystals are exemplary
cases of this phenomenon [2]. However, the existence of
this dipolar ferromagnetic (DFM) ground state is highly
dependent on the arrangement of spins, due to the di-
rectional dependence of the dipole interaction. Dipoles
distributed on face-centred and body-centred cubic lat-
tices [3,4] are known to exhibit the transition to ferro-
magnetic ordering and it is straightforward (albeit com-
putationally expensive) to simulate the transition using
the Monte Carlo method. Simulation results show a ten-
dency to order at a well-defined temperature. Such simu-
lation models also exhibit rapid deterioration of the DFM
ground state with the introduction of disorder, as shown
in Figure 1. In this example, quenched disorder is added
to a closely-packed system of Ising dipoles in the form of
randomly-signed exchange between nearest neighbours, as
in the short-range Edwards-Anderson (EA) spin glass [5].
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This method presents a means of introducing the disorder
in a controlled manner and is therefore favourable over
analogous treatments involving weak disorder described
by off-lattice fluctuations [4]. Aside from the limit in which
the additional interactions dominate (where spin glass or-
dering is expected), the behaviour leading to the destruc-
tion of the ferromagnetic order is unknown.

Harris [6] proposed a general criterion for changes to
the behaviour of pure systems with the introduction of
randomness. A new type of critical behaviour is predicted,
if the transition observed in the pure case is sharp in a
specific sense. The transition must display a power-law
divergence of the specific heat (with exponent o > 0),
as opposed to a singular thermodynamic behaviour (with
a < 0), where the transition is signalled only by a cusp in
specific heat. Chayes et al. [7] examine a host of systems
for which a positive specific heat exponent in the pure
system corresponds to a negative exponent in the random
equivalent. Indeed, if the converse is true, and the pure
system has a negative specific heat exponent, then the
addition of disorder simply leads to irrelevant corrections
to the scaling behaviour [8].

Three-dimensional Ising dipolar systems have been
shown to behave in a way characteristic of a mean field
description [9-11], whereas those comprising vector dipo-
lar spins typically resemble systems interacting via short-
range exchange [12]. This discrepancy stems from the
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Fig. 1. Temperature dependence of magnetisation measure-
ments for a FCC dipolar system with N = 108 spins for varying
amounts of disorder, controlled by the coupling constant, Jga,
which describes the strength of the randomly-signed short-
range exchange.

fact that the upper critical dimension (defining the lower
limit for which fluctuations can be neglected) is three in
the former case and four in the latter. The Ising dipo-
lar system therefore represents a unique case for which
predictions based on exact solutions from mean field the-
ory at marginal dimensionality can be tested experimen-
tally [13]. Furthermore, it presents an ideal testing ground
for the extent to which the interaction range influences
critical behaviour [14]. The marginality of the system
manifests itself in the appearance of logarithmic correc-
tions to mean field theory which produce a logarithmic
divergence in the specific heat, implying a sharp tran-
sition, consistent with experimental findings for three-
dimensional systems of Ising dipoles [15]. Since the mean
field prediction for the specific heat exponent is zero, the
system represents a marginal case for the applicability of
the Harris criterion.

This investigation examines the effect of disorder on
a three-dimensional system of Ising dipoles by means of
Monte Carlo simulations. Finite-size scaling is employed
to locate the temperature of the expected phase transition
in the pure system and characterise its critical properties.
Data from weakly disordered systems are scaled in a simi-
lar manner in order to gauge the relevance of the disorder.
It is clear, both from the raw data and from the scaling
analysis presented, that the ferromagnetic ground state
cannot be detected beyond a certain disorder level.

Monte Carlo simulations

The model Hamiltonian for the uniaxial dipole system
with the Ising spin axis oriented in the z direction [16] is,

0% S5pSp
ST 0 WACEIEE) pb a9

r#r’/
(1)
The vector § has length a and runs over ¢ nearest neigh-
bours, coupling spins via a quenched random bond vari-

able, ops € {—1,+1}. The magnitude of the exchange en-

ergy is denoted Jgu4 and G = %(gug)2 is the strength of
the dipole interaction. Spins are placed on a lattice array
with face-centred cubic (FCC) structure and number den-
sity of one spin per unit cube, in the length scale of the
simulated system. The dipole axes are aligned with one of
the edges of the cubic lattice cells. Periodic boundary con-
ditions are implemented by Ewald summation for a cubic
simulation box [17]. Energy, temperature and Jg4 are all
measured in units of dipolar interaction energy for a pair
of spins of unit length separation.

Using the Metropolis Monte Carlo method, data are
obtained for systems of linear dimension L = 3, 4, 5,
6 and 7 via a process of slow-cooling. This is executed
through a series of isothermal runs, in temperature steps
of 0.025 and 0.05. After an initial prologue for equilibra-
tion, several thermodynamic properties are measured, in-
cluding magnetisation, (m); second and fourth magnetic
moments, <m2> and <m4>; energy and its square, (F)
and <E2>; susceptibility, x = (<m2> - <m>2)/T; specific
heat, C = ((E?) — (E)?)/T; and the Binder cumulant,

U=1- <m4> /3 <m2>2. Disorder is introduced in the form
of quenched random interactions between nearest neigh-
bours. These are short-range EA-type spin glass interac-
tions of variable strength, Jg 4, and disorder averages are
determined from tens to hundreds of disorder realisations.

Renormalisation group transformation

The critical properties of the system are determined by
scaling the data to achieve size-independent collapse of
the temperature dependence of all observables. The re-
quired finite-size scaling Ansétze are derived by examin-
ing the behaviour of the system under renormalisation
group transformation. Since the test system comprises
purely dipolar interactions, the random variable is omitted
from the Hamiltonian in equation (1). Whilst the frame-
work for this transformation was developed many years
ago [16], the form of the scaling functions for the marginal
case of the Ising dipolar system is yet to be explicitly de-
rived. One can formalise the ‘phenomenological renormal-
isation’ [18] occuring at the transition by transforming the
lattice size L as L' = L/b.

The modified Hamiltonian is converted to one describ-
ing continuous spins via the standard ¢* theory in which
a coefficient ug acts as a control parameter for the inter-
action [19]. A source term, h, is included to enable func-
tional differentiation of the free energy. The result takes
the form,

— 1
H= g [ U@no-q ~honeo

—Uo /ql /q2 o ¢Q1¢QQ¢‘13¢—Q1—q2—q3, (2)

where the following integral convention is employed here-

after, [ — (2m)7 [i_,c,d% with A ~ 7/a. The
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function in the first integral of equation (2) is defined as,

N
Uo(q) =10 +@* — fo(@®)* + g0 (%) ; (3)

where the coefficient g o< t = (T — T.)/T. and T, is the
critical temperature of the DFM transition. The remaining
coeflicients arise from an expansion of the dipolar term in
the Hamiltonian in the limit of small q. The spin-spin
correlation function for the Gaussian approximation to
this model is simply the inverse of this function, Uy(q).
For ¢ = 0, the correlation function is shape-dependent
and takes the form,

Go(0) = (ro +go(d™" — (d = 2)P/ar)) ™", (4)

where ay is the first expansion coefficient of the dipolar
term and,

&= 7ZT;jd(1de0829ij), (5)
J

and 6;; is the angle between 7;; and the z axis [10]. The
renormalisation is undertaken by integrating out large
wavevector modes and expanding the non-Gaussian part
of the Hamiltonian perturbatively for small ug [20]. The
result is rescaled according to ¢ = ¢'/b and ¢ = (¢,
where ( is chosen in order to keep the coefficient of the ¢
term constant to leading order in u3. The renormalisation
group equations can be written in differential form by tak-
ing b = ¢’ and building up infinitesimal transformations
using the group composition property.

The resulting scaling function for the free energy den-
sity takes the form,

Ftshyu, LY = b~ f (00, b LY + gt h),  (6)

where g represents the analytic part of the transformation
and coeflicients g and ug have been identified with vari-
ables t and u. The latter is a dangerous irrelevant variable
since the free energy can become singular below the transi-
tion if it is removed. The correct finite-size scaling proper-
ties in this case are obtained by renormalising the system
size to unity [21]. A further substitution of ¢/ = ¢/u’"/*
then gives a new scaling form for the free energy,

R 1) +G(t k) = f(E D), (7)

f:t’/u’l/Q,ﬁ:h’/u’1/4. (8)

The analytic part of the transformation also contributes
to the singular dependence of the free energy on ¢ and
this is absorbed into the function f. In order to write the
scaling forms in a representation conducive to data fit-
ting, it is convenient to absorb all constant factors into
the singular function and define a fitting parameter, v,
which controls the shift imposed on the reduced temper-
ature variable, ¢ [22]. Combining equations (6) and (7),
the free energy includes logarithmic corrections and is ex-
pressed as,

f(t hyu, L™ = L™4f (&, h) + g(t, h), (9)

f=LY1og"C Lt +vL Y log~¥* L), h = L¥"hlog"/* L,
(10)
where y; = 3/2 and y, = 9/4 define the renormalisation
exponents for the mean field theory and logarithmic func-
tions are written in terms of some unitary length scale [14].

Finite-size scaling

The scaling forms for physical quantities follow then from
simple derivatives of this function. For an observable X,
the scaling form is written in terms of a function Fx (Z, k).
It can then be expanded in a Taylor series about the finite-
size limit in the critical region, given by small ¢ and fi-
nite L [23]. The functions are,

(m) ~ Lyn—d 10g1/4 L F<m> (7?, il)

-1
~ Lyhid 10g1/4 L <a0 + a1t + 5032{2 + ...

ph oy b )
losL  log’L )’

(11)
for the magnetisation,
<m2> ~ L[Pvn—2d 10g1/2 L F<m2> (f, il)

-1
~ [2yn—2d logl/2 L (ao + ait + 5(1252 + ...

b1 ba )
+—+ + ..., 12
IOgL 10g2 L ( )
for the second order magnetic moment,

x ~ L2 1og!/2 [, E (i, h)

- 1
~ L2y"7d10g1/2 L (ao +ait + 5@27}2 + ...

b1 ba
e ), 13
logL  log?L ) (13)

for the susceptibility and,
U ~ Fy(t,h) +ci L72n
-1 -
~ ag+ ait + §a2t + ...

b1 by
logL = log? L

+ .. L (14)

for the Binder cumulant. The last term in the scaling form
for the Binder cumulant arises due to the field dependence
of the analytic part of the free energy. This correction is
not expected to affect the scaling of the other thermody-
namic properties, as the logarithmic corrections will dom-
inate their form [14]. Data collapse is achieved by plotting
scaled observables with respect to the shifted temperature
variable, £, so that data from systems on all length scales
fall onto a single curve.

The scaling form is only valid in the vicinity of the
transition so the fitted data are restricted to this region
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Fig. 2. (a) Finite-size dependence and (b) collapse of the Binder cumulant data in the critical region for the pure dipolar

system.

Table 1. Parameter values for fitting the pure dipolar system, quoted with 99% confidence levels.

T v b1 b c1
(m) 3.15292 £ 0.00013 —1.5317 £ 0.0011 0.44+0.10 —0.36 £0.08
<m2> 3.15292 £ 0.00005 —1.14183 +0.00042 0.79 +£0.17 —0.62 +0.13
X 3.152916 + 0.000004  —1.14531 £0.00004 0.08 £0.02 —0.07 £0.01
U 3.152916 4+ 0.000005 —1.64751 £0.00004 1.30 £0.05 —0.314+0.01 —2.33+0.19

in order to achieve meaningful collapse. The imposed re-
strictions are determined by pinning the set of each sample
size to that of the smallest size. The subset of the smallest
sample is chosen by minimising the weighted cost associ-
ated with fitting the restricted Binder cumulant data to
the mean field approximation of equation (14).

The ability of a given set of fit parameters to obtain
acceptable data collapse can be determined via a suitably
robust ad hoc method. One scales every set of data points
for all lattice sizes using the appropriate L-dependent log-
arithmic factors. Combining them in a single set, the data
are then interpolated as a high-order polynomial defining
an effective mean. The L-dependence of this function is
implicit in the functional form of ¢t = #(T, L; T, v).

A cost function is formed from the error-weighted sum
of squares for the vertical deviation of each scaled data
point from this master fit curve. Minimising this function
numerically yields a set of parameters for each observable.
A global value for the critical temperature, T, is obtained
by averaging the weighted T, values from the initial fits
and refitting all observables using the fixed average value.

Results

In the case of the pure dipolar system, the dimensionless
ratio U displays scale invariance at the transition with
some statistical scatter. It is clear in Figure 2a that there is
a size-dependent systematic shift away from a single scale
invariant crossing at the critical temperature. Figure 2b
shows the collapse of these data, confirming the validity
of the derived scaling functions. The critical temperature

and the fit parameter v are only effective in collapsing the
size-dependent data sets laterally. The vertical displace-
ment required to achieve total collapse is controlled by
parameters b; and by of the logarithmic corrections and
the importance of their inclusion is vast when compared
with previous analyses of Ising dipole systems [24]. Global
fits for magnetisation and susceptibility also show excel-
lent data collapse [20]. The correction arising from the an-
alytic part of the free energy density transformation has
little effect for all observables aside from the Binder cumu-
lant, and this is a further indication of the importance of
the logarithmic corrections in the upper critical dimension
of the uniaxial dipolar system. It should be noted that the
least sum of squares values corresponding to the param-
eters given by the global T, deviate by no more than 2%
from their original values in the initial fits.

Fitted parameter values are quoted with error esti-
mates corresponding to 99% confidence in Table 1. The
fitted values for the lateral parameters, T, and v, are cal-
culated with much greater confidence than are those as-
sociated with vertical shift, which pertain to logarithmic
corrections. This is to be expected, since the refitting pro-
cess is independent of T,., and the value chosen for v is
pinned to that of the critical temperature.

The mean field scaling functions yield good data col-
lapse for a certain range of weak disorder. Fits are compa-
rable with those of the pure case up to a disorder strength
of Jga ~ 0.25. As shown in Figure 3a, the mean field
predictions are applicable at this value and the data sets
collapse as they did in the pure case. Beyond this disor-
der strength, the simulations continue to show a transition
to ferromagnetic ordering (see Fig. 3b). However, fitting



A.V. Klopper et al.:

Effect of weak disorder on the ground state of uniaxial dipolar spin systems... 49

e
9

¢
W

(a) Jga =025

U-bylog'L-bylog > L-¢; L7
o
(@)

(b) Jga = 0.40

1.4 1.2 1 0.8 0.6 0.4
7=L3%0g" L (1+vL3%log™?3L)

2.6 2.7 2.8 2.9 3 T. 3.1

Fig. 3. (a) Collapse of the Binder cumulant data for the dipolar system with Jg4 = 0.25. (b) Temperature variation in Binder
cumulant data for Jga = 0.40 suggests a ferromagnetic transition still exists.

data to the mean field scaling forms proves increasingly
difficult in this intermediate range and confidence levels
suggest the description is unsuitable here. When disor-
der exceeds a level corresponding to Jg4 ~ 0.5, there is
no ferromagnetic transition and data cannot be scaled at
all using the mean field predictions. This range coincides
with the disorder level at which the ferromagnetic transi-
tion appears to deteriorate in Figure 1.

Discussion

The critical temperature of the apparent ferromagnetic
transition calculated by the fitting process decreases as
the disorder strength is increased, as shown in Figure 4
(and suggested by the trend shown in Fig. 1). The smooth
change away from the value used to fit data for the pure
case supports the preservation of the transition to DFM
behaviour predicted by the mean field theory. Taking into
account the numerical inaccuracy of the disordered sys-
tem data, this smoothness is evident in the case where
added disorder does not exceed Jpa = 0.25, whereupon
there is an abrupt change from the low disorder trend.
This does not necessarily mean that systems beyond this
disorder range are not of DFM character, since the mean
field scaling functions can still achieve data collapse. How-
ever, discontinuities in the variation of parameter values
may point towards a change in the critical behaviour.
There are two plausible scenarios in which this change
could occur. The first predicts an intermediate transition
from pure DFM behaviour to disordered DFM behaviour
at some finite strength Jg4 = J*. One might suppose
this new disordered phase exists in systems with disorder
strength below some upper limit, Jz4 = JT, at which spin
glass ordering sets in. An alternative picture describes a
gradual crossover to a new kind of disordered critical be-
haviour for any finite value of Jg4. However, this scenario
contradicts the results of scaling in the low disorder re-
gion to some extent. In particular, the onset of new be-
haviour with the introduction of disorder is not expected
to be well-described by the mean field theory, as seen here.
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Fig. 4. Variation in critical temperature, 7., with increasing
disorder strength, Jea.

However, it is conceivable that the simulated systems are
too small to detect such a subtle change.

Whilst the behaviour of the system with intermediate
disorder strength remains unclear, one can be confident
that the strongly disordered systems simulated here do
not have a DFM ground state. The behaviour observed in
this region of phase space cannot be determined within the
mean field description presented. Further analysis must
address a revision of the scaling functions for the thermo-
dynamic properties of disordered uniaxial dipolar systems,
and an investigation of alternate forms of ordering for the
limit of strong disorder.

We acknowledge the Australian Research Council and the
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